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Abstract
As polynomial eigenfunctions of a linear second-order difference operator, a
special case of the Meixner polynomials,M(2,c)

n (x+1), is transformed explicitly,
into new complete sequences of non-classical orthogonal polynomials.

PACS numbers: 0230, 0210N, 0230T, 0365

1. Introduction

Consider the factorization chain

Hj(x)− µj = Lj(x)Rj (x)

Hj+1(x)− µj = Rj(x)Lj (x) j ∈ Z x ∈ C (1)

whereHj is a second-order linear operator, andLj andRj are first-order linear operators. Such
a factorization chain can be used to generate an ‘exactly solvable’ (in complete sequences of
orthogonal polynomial solutions) second-order linear operator. For that, three kinds of method
can be applied.

The first method consists in imposing on the factorization chain ‘quasi-periodicity’
conditions (see [27]). Such a method has been used to generate the Charlier, Kravchuk
and Meixner polynomials (see [4]) as well as their q-versions (see [27]). It has also been
used to generate a non-classical sequence of orthogonal polynomials related to the Hermite
polynomials (see [7]).

The second method consists in imposing on the factorization chain another kind of self-
similarity, a particular case of the so-called ‘shape invariance’ (see e.g. [15]). More precisely,
one demands that the variable j in equation (1) acts not simply as an index but as a full
independent variable. The method has been applied in [20] to generate the Charlier, Kravchuk,
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Meixner and Hahn polynomials. In addition, the method has been applied to the cases of
hypergeometric polynomials on linear lattices (see [2]) and on q-nonlinear lattices (see [3]). It
can also be applied to generate special cases of the so-called semiclassical or more generally
Laguerre–Hahn polynomials [17,18], as can be seen from [4,5]. Note that the shape-invariance
method was used in [16] to generate a non-classical sequence of orthogonal polynomials related
to the Jacobi polynomials.

The third method (in which we are interested here) consists in imposing on the factorization
chain that two successive links belong to totally different families. In that case, an operator
(Hamiltonian) in a given position in the chain is seen as a transformation of the operator lying in
the preceding one. The method was used in [26] to modify the Hermite polynomials into non-
classical sequences of orthogonal polynomials (including the above-cited ones from [7]). In
this paper, the method is used to modify efficiently the special case of the Meixner polynomials,
M(2,c)

n (x + 1), as polynomial eigenfunctions of a linear second-order difference operator, into
new complete sequences of non-classical orthogonal polynomials.

In the following section, we give a detailed discussion of the third method when applied to a
general second-order linear difference operator and especially when applied to the second-order
difference operator of hypergeometric type (see equation (15)). One will note for example the
link between the method and the commonly used Christoffel and Geronimus transformations
(see e.g. [10, 11, 28]). The third section, the main part of this paper, is devoted to the evoked
explicit transformation of the special Meixner M(2,c)

n (x + 1) polynomials. The last section is
essentially a concluding one. An outlook is also given there. Finally, an appendix is given.
It contains, for some instances of new polynomials, a collection in tables of a few important
data such as intervals of orthogonality, weight functions and the first four polynomials.

2. Generalities

Let us first consider a general situation. The studied second-order difference operator H ,

H(x) = u(x)Ex + v(x) + w(x)E−1
x (2)

Ei
x[h(x)] = h(x + i), i ∈ Z , is, in the first place, supposed to act in a linear space of functions,

say L, and to admit a non-empty set of eigenfunctions. One can pick (�α̂, λα̂) as one of its
pairs of eigenfunctions and corresponding eigenvalues. In that case, one can factorize H and
then define H̃ as follows:

H − λα̂ = Lα̂Rα̂ H̃ − λα̂ = Rα̂Lα̂ (3)

where

Rα̂ = 1 + fα̂(x)E
−1
x Lα̂ = u(x)Ex + gα̂(x)

fα̂(x) = − �α̂(x)

�α̂(x − 1)
gα̂(x) = −w(x)�α̂(x − 1)

�α̂(x)
.

(4)

As it can be easily seen, the similarity reductions

ρHρ−1 ρ̃H̃ ρ̃−1 (5)

where

ρ2(x + 1)

ρ2(x)
= u(x)

fα̂(x + 1)gα̂(x + 1)
= u(x)

w(x + 1)

ρ̃2(x + 1)

ρ̃2(x)
= u(x)

fα̂(x + 1)gα̂(x)
(6)

allow us to transform H and H̃ into their formal symmetric form (i.e. like A(x + 1)Ex +
B(x) + A(x)E−1

x ). Denote by �2(a, b; ρ2) the linear space of vectorial functions (ψ(a),
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ψ(a + 1), . . . , ψ(b)), in which is defined a discrete-weighted inner product

(ψ, φ)ρ =
b∑
a

ψ(x)φ(x)ρ2(x) − ∞ < a < b � +∞ (7)

(clearly, such a summation is performed on a, a + 1, . . . , b). A thus-defined �2(a, b; ρ2) is
well known to be a separable Hilbert space (see e.g. [1], for a general theory).

The similar space for ρ̃2 will be denoted by �̃2(ã, b̃; ρ̃2).
Letting {�α, λα}, α ∈ Nα (a denumerable index set, not containing α̂), be a set of

eigenfunctions and corresponding mutually different eigenvalues of H , one easily finds that
the set (�̃α̂, λα̂), {�̃α, λα}, α ∈ Nα where

�̃α = Rα̂�α Lα̂�̃α̂ = 0 (8)

is a resulting set of eigenfunctions and corresponding mutually different eigenvalues of H̃ .
Moreover, the completeness of �̃α̂ , �̃α , α ∈ Nα in �̃2(ã, b̃; ρ̃2) can be deduced from that of
�α , α ∈ Nα in �2(a, b; ρ2) in the sense of the following proposition.

Proposition 2.1. Supposing that:

(c1) Lα̂#̃α̂ ∈ �2(a,+∞; ρ2), and {Rα̂#α} ∈ �̃2(a + 1,+∞; ρ̃2), for {#α} and #̃α̂ belonging to
the first and second space respectively.

(c2) #α(x) = #̃α̂(x) = 0, x < a + 1.
(c3) α ∈ Nα , {#α} is complete in �2(a + 1,+∞; ρ2).

Then:

(r1) The operators Lα̂ and Rα̂ are (ρ2, ρ̃2)-mutually adjoint, in the sense that

(#̃α̂, Rα̂#α)ρ̃2 = (Lα̂#̃α̂,#α)ρ2 . (9)

(r2) #̃0
α̂

and {Rα̂#α}, α ∈ Nα , are complete in �̃2(a + 1,+∞; ρ̃2), where

#̃0
α̂(x) =

{
Ỹα̂(x) x � a + 1

0 x < a + 1

Ỹα̂(x) being defined by

Lα̂Ỹα̂(x) = 0. (10)

Proof. Simple summation by parts gives

(Lα̂#̃α̂,#α)ρ2 =
+∞∑
a

u(x)#̃α̂(x + 1)#α(x)ρ
2(x) +

+∞∑
a

gα̂(x)#̃α̂(x)#α(x)ρ
2(x)

=
+∞∑
a+1

u(x − 1)#̃α̂(x)#α(x − 1)ρ2(x − 1) +
+∞∑
a

gα̂(x)#̃α̂(x)#α(x)ρ
2(x)

=
+∞∑
a+1

u(x − 1)#̃α̂(x)#α(x − 1)ρ2(x − 1) +
+∞∑
a+1

gα̂(x)#̃α̂(x)#α(x)ρ
2(x) (11)

where we used (c2) for the last equality. On the other side

(#̃α̂, Rα̂#α)ρ̃2 =
+∞∑
a+1

#̃α̂(x)[#α(x) + fα̂(x)#α(x − 1)]ρ̃2(x)

=
+∞∑
a+1

#̃α̂(x)#α(x)ρ̃
2(x) +

+∞∑
a+1

#̃α̂(x)fα̂(x)#α(x − 1)ρ̃2(x). (12)
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Remarking that the equality of equations (11) and (12) requires the conditions set by the
definitions in equation (6), this proves (r1).

We remark next that, to prove the completeness of the system in (r2) in �̃2(a+1,+∞; ρ̃2),
it suffices to prove its closure in that space seen that the latter is separable and Hilbertian, while
the equivalence between the completeness and the closure of systems in such spaces is a well
known result (see e.g. [13], theorem 4, paragraph 4, chapter 3).

Let #̃α̂ be an element satisfying (c1). One can suppose without contradicting any
hypothesis that it satisfies (c2) as well. Suppose next that this element is orthogonal to the
full set {Rα̂#α}. Therefore, by the already proved (r1) and using (c3) and (c2), one obtains
that the unique possibly non-vanishing coordinate of Lα̂#̃α̂ is that in the ath place. Clearly,
this coordinate reads u(a)#̃α̂(a + 1). However, as is easily seen, up to a multiplication by a
constant, this is exactly the structure of the semi-infinite vector Lα̂#̃

0
α̂
. In other words, #̃0

α̂
is

essentially the unique element orthogonal to the whole set {Rα̂#α}, which proves (r2) and the
proposition is completely proved. �

The adjointness such as that in equation (9) was intensively used in [12, 21] to give
simplest proofs of the orthogonality relations for most of the classical polynomials (including
the Askey–Wilson class). In those works, the role of Lα̂ and Rα̂ were played by the usual
difference relations (considered there as the starting point) lowering and raising the degree
of the polynomials and ‘perturbing’ the parameters. Thus, ρ2 and ρ̃2 differed only by a
‘perturbation’ of parameters.

Here, ρ2 and ρ̃2 will differ more than in the unique shape: we expect ρ̃2 to be ‘non-
classical’ for given ‘classical’ ρ2. This will be done efficiently on the special case of Meixner
polynomials M(2,c)

n (x + 1).
To treat the question of orthogonality for the new functions �̃α̂ , �̃α , α ∈ Nα , in

�̃2(ã, b̃; ρ̃2), one can adopt the following method. Firstly, certify, using the reasoning of
the preceding proposition, the orthogonality of �̃α̂ and every �̃α , α ∈ Nα (provided that
ã = a + 1; b = b̃ = +∞). Secondly, deduce the orthogonality of �̃α and �̃β for α 
= β,
α, β ∈ Nα , as that of eigenfunctions corresponding to mutually different eigenvalues for a
symmetric operator H̃ , provided that (obtained using simple summation by parts)

u(x)ρ̃2(x)
(
�̃α'�̃β − �̃β'�̃α

)∣∣b̃
ã−1 = 0 (13)

where ' = Ex − 1. It is this method that will be followed later to verify the orthogonality
relations for the functions (polynomials) modifying the already evoked special case of Meixner
polynomials M(2,c)

n (x + 1).
Thus, from a Sturm–Liouville operator for which the eigenfunction expansion is known,

we can generate a new (in the sense that the operators must belong to different families)
Sturm–Liouville operator and the corresponding eigenfunction expansion.

However, as we are ‘transforming’ polynomials, the situation is that the ‘transformation
function’�α̂ cannot be generally taken as a polynomial, while the ‘transformed functions’, �̃α̂ ,
�̃α, α ∈ Nα need to be polynomials or rational functions satisfying additional constraints. So,
for a given Sturm–Liouville difference operator, a copious reservoir of ‘good’ transformation
functions cannot be expected.

Remark that, in what precedes, the transformation function was deliberately chosen outside
the ‘transformable system’ �α, α ∈ Nα . Supposing that the transformable functions �α(x)

are explicit functions not only of x, but also of α, it also makes a sense to choose as the
transformation function a function �γ for which γ ∈ Nα . In that case, the new functions need
to be searched for:

�̃α = Rγ�α

λα − λγ
(14)
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so the transformed �̃γ must be understood as a limit (Hospital’s rule) of the right-hand
side of equation (14) for α −→ γ . In orthogonal polynomial theory, transformations
as in equation (14) (we mean here when the acting functions are explicit functions of the
independent variable α) are referred to as the Christoffel transformations having as inverse
the so-called Geronimus transformations. Many interesting studies and applications of these
transformations can be found in [8, 28] and references therein.

The second-order difference operator in which we are interested here is the hypergeometric
difference operator on linear lattices [22]

H = σ'∇ + τ' = (σ + τ)Ex − (2σ + τ) + σE−1
x (15)

σ and τ being polynomials in x of second (at most) and first degree respectively.
Let λn = nτ ′ + 1

2σ
′′n(n − 1) and Pn(x), n = 0, 1, 2, . . . , be its eigenvalues and

the corresponding polynomial eigenfunctions (see for e.g. [22]). According to the above
discussions, we can transform the polynomials as

P̃n(x) = Pn(x) + fα̂(x)Pn(x − 1) = (1 + fα̃(x)E
−1
x )Pn(x) (16)

where

fα̂(x) = − �α̂(x)

�α̂(x − 1)
(17)

provided that the function �α̂(x) does not belong to the sequence Pn(x), n = 0, 1, 2, . . . .
Moreover, since the hypergeometric polynomials on linear lattices are (if taken in their
canonical forms) polynomials not only in x but also in n (called dual polynomials), we can
also use the Christoffel transformation (we here shifted x comparatively to equation (14), in
order that the obtained polynomials (in n) be of degree exactly equal to x):

P̃ (γ )
x (n) =

Pn(x + 1)− Pγ (x+1)
Pγ (x)

Pn(x)

λn − λγ
. (18)

Thus by equation (18), one can transform the polynomials dual to the hypergeometric
polynomials (recall that for the Charlier, Meixner and Kravchuk polynomials, there exists self-
duality) into non-classical polynomials with rational coefficients in the three-term recurrence
relation (in [8], one can find detailed discussions concerning the applications of the Christoffel
transformation to any family of orthogonal polynomials admitting a dual sequence of
orthogonal polynomials, i.e. q-Racah polynomials and specializations (in (18), the situation is
similar to that of [8], the variables x and n having interchanged their roles)).

Here, the transformation interesting us is that given by equations (16) and (17). In this
case, for reasons already explained, the transformation function �α̂(x) would lie outside the
set of transformable polynomials Pn(x). Moreover, as can be easily seen, if we expect that the
transformed polynomials will be of different degree (and so be independent), we must avoid
the choice of �α̂(x) as a polynomial. However, for evident reasons, the ratio �α̂(x)

�α̂(x−1) must be

a rational function, say Nα̂(x)

Dα̂(x)
. Thus, if for example the new ground state (provided it belongs

to �̃2(ã, b̃; ρ̃2)) appears in the form �̃α̂(x) = N̂0(x)

Dα̂(x)
, the new polynomials should be checked

inside the set constituted by N̂0(x) and the different numerators of the fractions

P̃n(x) = Pn(x)− �α̂(x)

�α̂(x − 1)
Pn(x − 1) n = 0, 1, . . . (19)

where
�α̂(x)

�α̂(x − 1)
= Nα̂(x)

Dα̂(x)
(20)
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while the actual new weight should read D−2
α̂
(x)ρ̃2(x). The work of Samsonov–Ovcharov

(see [26]), on the ‘modification’ of the Hermite polynomials, is a typical example (unique in
the literature, to our best knowledge) of a realization of this scheme. For the polynomials on a
lattice, this scheme will be realized below only for a special case of the Meixner polynomials,
namely the M(2,c)

n (x + 1), the question remaining open for higher polynomials (i.e. Hahn,
Askey–Wilson, . . . ).

The last remark, before starting with the calculation, concerns the degrees of the
polynomials (in x) to be obtained by equations (19), (20). Writing the operator H̃ [ 1

Dα̂(x)
]

in the form

σ̃'∇ + τ̃' + ν̃ (21)

one easily notes that the functions σ̃ , τ̃ and ν̃ are not necessarily of degrees two, one
and zero respectively. In other words, H̃ [ 1

Dα̂(x)
] is not necessarily of hypergeometric type.

Consequently, as in the case of the Hermite polynomials ‘modified’ by Samsonov–Ovcharov
(see also the polynomials generated in [7] by ‘quasi-periodicity’ methods), we cannot expect
that the corresponding polynomials (N̂0(x) and numerators in equation (19)) will be of degrees
exactly equal n = 0, 1, 2, 3, . . . . There is clearly no need to be worried about this, seeing that
the polynomials conserve most other properties common to usual orthogonal polynomials
(completeness, orthogonality, difference and recurrence relations, difference (eigenvalue)
equations, duality, . . . ). The question of global study of orthogonal polynomials of such a
category have been already raised in [8].

3. The special Meixner M (2,c)
n (x + 1) case

Recall that the Meixner polynomials M(δ,c)
n (x) are a special case of general polynomial

eigenfunctions of the hypergeometric difference operator in equation (15) (see e.g. [22]). The
polynomials to be transformed here are Meixner’s M (2,c)

n (x + 1). They satisfy the second-
order eigenvalue difference equation

[u(x)Ex + v(x) + w(x)E−1
x ]M(2,c)

n (x + 1) = (c − 1)nM(2,c)
n (x + 1) (22)

where

u(x) = c(x + 3) v(x) = −[(c + 1)x + 3c + 1] w(x) = x + 1 (23)

as well as the usual recurrence relations

Pn+1 + bnPn + a2
nPn−1 = xPn (24)

with

bn = − (c + 1)n + 3c − 1

c − 1
a2
n = n(n + 1)c

(c − 1)2
(25)

and the difference relations

(c − 1)an+1M
(2,c)
n+1 (x + 1) = [u(x)Ex + k(x; n)]M(2,c)

n (x + 1)

−(c − 1)anM
(2,c)
n−1 (x + 1) = [u(x)Ex + l(x; n)]M(2,c)

n (x + 1)
(26)

where

k(x; n) = −x + n− 1 l(x; n) = −c(x + 3 + n). (27)

They are orthogonal on (−1,+∞) with weight ρ2(x) = cx(x + 2).
The transformation functions are chosen as c−xM̂(c)

n (x), eigenfunctions of the same
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operator as the Meixner M(2,c)
n (x + 1), but with eigenvalues −(c − 1)(n + 2). Precisely,

M̂(c)
n (x) = M(2,c)

n (−x − 3).

The transformed rational type functions are �̃γ,0(x), �̃γ,n+1(x), n, γ = 0, 1, 2, . . .[
c(x + 3)Ex + gγ (x)

]
�̃γ,0(x) = 0

�̃γ,n+1(x) = [
1 + fγ (x)E

−1
x

]
M(2,c)

n (x + 1)
(28)

where

fγ (x) = − M̂(c)
γ (x)

cM̂
(c)
γ (x − 1)

gγ (x) = v(x)− u(x)fγ (x + 1) + (c − 1)(γ + 2).

They satisfy the second-order eigenvalue difference equation[
u(x)Ex + ṽγ (x) + w̃γ (x)E

−1
x

]
�̃γ,0(x) = −(c − 1)(γ + 2)�̃γ,0(x)[

u(x)Ex + ṽγ (x) + w̃γ (x)E
−1
x

]
�̃γ,n+1(x) = (c − 1)n�̃γ,n+1(x) n, γ = 0, 1, 2, . . .

(29)

where

ṽγ (x) = v(x) + fγ (x)u(x − 1)− u(x)fγ (x + 1)

w̃γ (x) = fγ (x)
w(x − 1)

fγ (x − 1)
.

(30)

The case γ = 0 leads to classical polynomials. The cases γ � 1 lead to orthogonal rational
functions with non-classical weights and from which one can extract non-classical orthogonal
polynomials. Below, the computations, results and various discussions are given for the cases
of γ = 1, 2, and 3.

3.1. Second-order difference eigenvalue equations, eigenfunctions

In this subsection, in each case, are written explicitly the coefficients in the second-order
difference eigenvalue equations and the first four eigenfunctions.

The case γ = 1. The second-order difference eigenvalue equation reads as in equation (29)
with u(x) from equation (23),

ṽ1(x) = {−((c + 1)(c − 1)2x3 + (c − 1)(4c2 − 7c − 5)x2 + (6 − 20c2 + 19c + 3c3)x

+16c − 4c2)}/{((c − 1)x − 2)((c − 1)x + c − 3)}
w̃1(x) = ((c − 1)x + c − 3)x((c − 1)x − 1 − c)

((c − 1)x − 2)2
.

The new eigenfunctions are

�̃1,0(x) = 1

(x + 2)(x + 1)((c − 1)x − 2)

�̃1,n(x) = P1,n(x)

Q1(x)
n = 1, 2, 3, . . .

where Q1(x) = (c − 1)x − 2 and P1,n(x), n = 1, 2, 3, . . . , are some polynomials of degree
1, 2, 3, . . . respectively.
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The case γ = 2. The second-order difference eigenvalue equation reads as in equation (29)
with u(x) from equation (23),

ṽ2(x) = {−((c + 1)(c − 1)4x5 + 3(c2 − 5c − 4)(c − 1)3x4

−(c3 + 41c2 − 85c − 53)(c − 1)2x3 − 3(c − 1)

×(c4 − c3 − 63c2 + 77c + 34)x2 + (72 − 348c2 + 312c + 24c4 + 12c3)x

+180c − 72c2)}/{((c − 1)2x2 − (c + 5)(c − 1)x + 6)((c − 1)2x2

+(c − 1)(c − 7)x − 6c + 12)}
w̃2(x) = {((c − 1)2x2 + (c − 1)(c − 7)x − 6c + 12)x((c − 1)2x2

−3(c − 1)(c + 1)x + 2c + 2c2 + 2)}/{((c − 1)2x2 − (c + 5)(c − 1)x + 6)2}.
The new eigenfunctions are

�̃2,0(x) = {1}/{(x + 2)(x + 1)(2(c − 1)2x − c2 + ((c2 + 10c + 1)(c − 1)2)1/2 − 4c + 5)

×(2(c − 1)2x − c2 − ((c2 + 10c + 1)(c − 1)2)1/2 − 4c + 5)}
�̃2,n(x) = P2,n(x)

Q2(x)
n = 1, 2, 3, . . .

where Q2(x) = (c − 1)2x2 − (c + 5)(c − 1)x + 6 and P2,n(x), n = 1, 2, 3, . . . , are some
polynomials of degree 2, 3, 4, . . . respectively.

The case γ = 3. In order to avoid a fourth-order algebraic equation, we have fixed the
parameter c taking c = 1/2.

The second-order difference eigenvalue equation reads as in equation (29) with u(x) from
equation (23),

ṽ3(x) = {−3(x + 3)(37 536x + 709x4 + 56 21x3 + 21 946x2 + 43x5 + x6 + 18 432)}
/{2(x + 6)(x2 + 15x + 32)(x + 7)(x2 + 17x + 48)}

w̃3(x) = (x + 7)(x2 + 17x + 48)x(x + 5)(x2 + 13x + 18)

(x + 6)2(x2 + 15x + 32)2
.

The new eigenfunctions are

�̃3,0(x) = 1

(x + 1)(x + 2)(x + 6)(2x + 15 − 971/2)(2x + 15 + 971/2)

�̃3,n(x) = P3,n(x)

Q3(x)
n = 1, 2, 3, . . .

where Q3(x) = (x + 6)(x2 + 15x + 32) and P3,n(x), n = 1, 2, 3, . . . , are some polynomials
of degree 3, 4, 5, . . . respectively.

3.2. Orthogonality, weight functions

We refer literally to the results of the discussions in the first section, particularly those related
to the proposition 2.1. Here, a = −1, and the interval of orthogonality is (0,+∞). On the
other hand, various solutions of equation (6) for ρ̃γ are

ρ̃2
1 (x) = ρ̃2

1 (0)(3 − c)(cx − x − 2)(x + 2)(x + 1)cx

4(cx + c − x − 3)

ρ̃2
2 (x) = {cx(x + 1)(x + 2)(2xc2 − 4cx + 2x + 5 − 4c − c2 + ((c2 + 10c + 1)(c − 1)2)1/2)
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×(2xc2 − 4cx + 2x + 5 − 4c − c2 − ((c2 + 10c + 1)(c − 1)2)1/2)

×(c2 − 8c + 7 − ((c2 + 10c + 1)(c − 1)2)1/2)

×(c2 − 8c + 7 + ((c2 + 10c + 1)(c − 1)2)1/2)ρ̃2
2 (0)}

/{2(−5 + 4c + c2 − ((c2 + 10c + 1)(c − 1)2)1/2)

×(−5 + 4c + c2 + ((c2 + 10c + 1)(c − 1)2)1/2)

×(2xc2 − 4cx + 2x + c2 + 7 − 8c + ((c2 + 10c + 1)(c − 1)2)1/2)

×(2xc2 − 4cx + 2x − ((c2 + 10c + 1)(c − 1)2)1/2 + c2 + 7 − 8c)}
ρ̃2

3 (x) = {2−x7(x + 1)(x + 2)(x + 6)(2x + 15 − 971/2)(2x + 15 + 971/2)(−17 + 971/2)

×(17 + 971/2)ρ̃2
3 (0)}/{12(x + 7)(2x − 971/2 + 17)(2x + 17 + 971/2)

×(15 + 971/2)(−15 + 971/2)}.
Recalling that the bottom function �̃γ,0(x) is the solution of the equation (see equation (10))

Lα̂Ỹ (x) = 0 (31)

one directly deduces from proposition 2.1, the orthogonality, on the interval (0,+∞), of
the bottom function �̃γ,0(x) with each of the elements from the higher ladder �̃γ,n(x),
n = 1, 2, . . . , relative to the weights ρ̃2

γ (x). On the other hand, as one can easily show,
equation (13) is verified for α, β = 1, 2, . . . , α 
= β. Consequently, the transformed operator
H̃γ (in the left-hand side of equation (29)) is symmetric in the subspace of �̃2(0,+∞; ρ̃2

γ (x))

generated by the higher ladder �̃γ,n(x), n = 1, 2, . . . . Hence, the functions from this ladder
are mutually orthogonal there. Thus, we have obtained that all the new functions �̃γ,n(x),
n = 0, 1, 2, . . . , are mutually orthogonal on the interval (0,+∞) relatively to the weights
ρ̃2
γ (x) given above.

A direct consequence of this, are the orthogonality relations between polynomials related
to the �̃-functions. Namely, the following.

The polynomials

P̄1,0(x) = 1

P̄1,n(x) = (x + 2)(x + 1)P1,n(x) n = 1, 2, 3, . . .

are orthogonal on the same interval as �̃1,n(x) but now with the weight

3̃2
1(x) = [

(x + 1)(x + 2)Q1(x)
]−2

ρ̃2
1 (x).

Identically, the polynomials

P̄2,0(x) = Q2(x)

P̄2,n(x) = [�̃2,0(x)]
−1P2,n(x) n = 1, 2, 3, . . .

are orthogonal on the same interval as �̃2,n(x) but now with the weight

3̃2
2(x) = [

[�̃2,0(x)]
−1Q2(x)

]−2
ρ̃2

2 (x).

Finally, the polynomials

P̄3,0(x) = (x + 6)−1Q3(x)

P̄3,n(x) = [(x + 6)�̃3,0(x)]
−1P3,n(x) n = 1, 2, 3, . . .

are orthogonal on the same interval as �̃3,n(x) but now with the weight

3̃2
3(x) = [

[(x + 6)�̃3,0(x)]
−1Q3(x)

]−2
ρ̃2

3 (x).
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3.3. Completion

The completion of the functions �̃γ,n(x), n = 0, 1, 2, . . . , in �̃2(0,+∞; ρ̃2
γ (x)) follows from

that of the Meixner M(2,c)
n (x + 1) in �2(−1,+∞; ρ2(x)). This is a direct consequence of

proposition 2.1. In particular here, a = −1, so that #̃α̂ and #α considered in proposition 2.1
are obtained respectively from �̃γ,0(x) andM(2,c)

α (x+1) by sending coordinates corresponding
to negative x to zero.

On the other hand, the completion of the polynomials P̄γ,n(x), n = 0, 1, 2 . . . , in
�̃2(0,+∞; 3̃2

γ (x)) follows from that of �̃γ,n(x), n = 0, 1, 2 . . . , in �̃2(0,+∞; ρ̃2
γ (x)).

This completion holds well in spite of the fact that, in each of the constructed sequences
of polynomials, there exists at least one number n ∈ Z+ such that no polynomial from that
sequence has degree exactly equal to n.

3.4. Difference and recurrence relations

As other deducible properties of the new functions, one finds from equation (28) and the
recurrence relations for the MeixnerM(2,c)

n (x+1) (see equation (25)) polynomials, the following
five-term recurrence relations:

�̃γ,n+2(x) + [bn+1 + bn − 2x + 1]�̃γ,n+1(x) + [a2
n+1 + a2

n + (bn − x + 1)(bn − x)]�̃γ,n(x)

+[a2
n(bn + bn−1 − 2x + 1)]�̃γ,n−1(x) + a2

na
2
n−1�̃γ,n−2(x) = 0

n = 3, 4, . . . .

However, as easily seen, these recurrence relations are satisfied by any linear combination
(with coefficients depending on x and not on n) of Meixner M(2,c)

n (x + 1), and M(2,c)
n (x). In

other words, the relations do not depend of fγ (x).
More characteristic recurrence relations for these functions are the following three-term

recurrence relations that one can establish from equation (28), the difference eigenvalue
equation (22) and the difference relations equations (26), (27) satisfied by the Meixner
M(2,c)

n (x + 1) polynomials:

[(c − 1)an+1(fγ (x)l(x − 1; n)− w(x)− fγ (x)l(x; n) + fγ (x)(v(x)− λn)

−f 2
γ (x)u(x − 1))]�̃γ,n+1(x) + [fγ (x)k(x − 1; n)l(x; n)

−fγ (x)k(x − 1; n)(v(x)− λn) + f 2
γ (x)k(x − 1; n)u(x − 1)− w(x)l(x; n)

−fγ (x)k(x; n)l(x − 1; n) + k(x; n)w(x) + fγ (x)l(x − 1; n)(v(x)− λn)

−f 2
γ (x)u(x − 1)l(x − 1; n)]�̃γ,n(x) + [(c − 1)an(fγ (x)(v(x)− λn)

−fγ (x)k(x; n)− f 2
γ (x)u(x − 1) + fγ (x)k(x − 1; n)− w(x))]�̃γ,n−1(x) = 0

n = 2, 3, . . . .

The obtained functions satisfy also the following third-order difference relations, which
follow clearly from the difference relations equations (26) and (27) satisfied by the Meixner
M(2,c)

n (x + 1) polynomials, together with equation (28) and its inverse:

−λγ (c − 1)an+1�̃γ,n+1(x) = {[1 + fγ (x)E
−1
x ][u(x)Ex + k(x; n)]

×[u(x)Ex + gγ (x)]}�̃γ,n(x)

λγ (c − 1)an�̃γ,n−1(x) = {[1 + fγ (x)E
−1
x ]

×[u(x)Ex + l(x; n)][u(x)Ex + gγ (x)]}�̃γ,n(x) n = 2, 3, . . . .

Using the second-order difference eigenvalue equation (29) satisfied by the new functions
and the preceding relations, one can reach, if necessary, the following first-order difference
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relations:

−λγ (c − 1)an+1�̃γ,n+1(x) = {[−u(x)(v(x + 1)− λn) + u(x)gγ (x + 1) + k(x; n)u(x)
+fγ (x)u(x − 1)u(x)− u(x)fγ (x)k(x − 1; n)gγ (x − 1)/w(x)]Ex

+[−u(x)w(x + 1) + k(x; n)gγ (x) + fγ (x)gγ (x)u(x − 1)

+fγ (x)k(x−1; n)u(x − 1)− fγ (x)gγ (x − 1)k(x − 1; n)(v(x)−λn)/w(x)]}
×�̃γ,n(x)

λγ (c − 1)an�̃γ,n−1(x) = {[−u(x)(v(x + 1)− λn) + u(x)gγ (x + 1)

+l(x; n)u(x)+fγ (x)u(x−1)u(x)−u(x)fγ (x)l(x − 1; n)gγ (x − 1)/w(x)]Ex

+[−u(x)w(x + 1) + l(x; n)gγ (x) + fγ (x)gγ (x)u(x − 1)

+fγ (x)l(x − 1; n)u(x − 1)− fγ (x)gγ (x − 1)l(x − 1; n)(v(x)− λn)/w(x)]}
×�̃γ,n(x) n = 2, 3, . . . .

It is clear that the polynomials P̄γ,n(x) satisfy the same recurrence relations as the functions
�̃γ,n(x). Their difference relations are also obviously deduced from those of �̃γ,n(x).

3.5. Duality

Parallel to the above results for the functions �̃γ,n(x) and the polynomials P̄γ,n(x), one
can of course deduce the corresponding results for the polynomials dual to the polynomials
P̄γ,n(x) (more precisely, dual to the functions �̃γ,n(x)), n = 1, 2, . . . , thanks to the existence
of dual (self-dual) polynomials for the Meixner polynomials. We will denote Dγ,x(n) =
ρ̆(x)�̃γ,n+1(x), n, x = 0, 1, 2, . . . , ρ̆(x) = cx5(x + 3). Dγ,x(n) are polynomials in n, of
degree exactly equal x + 1 and satisfy the usual three-term recurrence relations (in x)

Px+1 + bγ,xPx + a2
γ,xPx−1 = nPx (32)

with (see equation (29))

bγ,x = ṽγ (x) a2
γ,x = w̃γ (x)u(x − 1)/(c − 1)2. (33)

The polynomials in n

Ďγ,0 = 1 Ďγ,1 = (c − 1)n− bγ,0 (34)

Ďγ,x+1 = ((c − 1)n− bγ,x)Ďγ,x − a2
γ,xĎγ,x−1 x = 1, 2, . . . (35)

are for x = 0, 1, 2 . . . of degree exactly equal to x and are clearly orthogonal, the condition
required in the well known Favard theorem (bγ,x real and a2

γ,x > 0, x � 1) being

satisfied. On the other hand, Dγ,x(n) = Ďγ,x(n)ρ̆(0)�̃γ,n+1(0), where from equation (28)
�̃γ,n+1(0) = (γ )n(

c
c−1 )

n[fγ (0) + 1 + 1
2n(1 − 1

c
)], (γ )0 = 1, (γ )n = γ (γ + 1) · · · (γ + n− 1),

n = 1, 2 . . . . Consequently,

�̃γ,n+1(x) = (γ )n(
c

c−1 )
n

cx5(x + 3)
·
[

2fγ (0) + 2 + n

(
1 − 1

c

)]
Ďγ,x(n) x, n = 0, 1, . . . . (36)

4. Concluding remarks and outlook

Concluding this paper, let us first remark that the obtained polynomials and functions can, in
their turn, be transformed in a similar manner. Here, the reservoir of transformation functions
is composed of

7α̂,n(x) = [1 + fα̂E
−1
x ]c−xM̂n(x) n, α̂ ∈ N n 
= α̂ (37)
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and, clearly, the process can, in principle, be repeated infinitely many times.
The existence of other efficiently transformable particular cases of the hypergeometric

difference operator H in equation (15), ‘higher’ than the special Meixner M(2,c)
n (x + 1) case

treated here, is of course not precluded. As noted in [6], it is neither precluded that such solvable
Hamiltonians could be generated by self-similarity or shape-invariance (symmetry) techniques.
The fact that any two of the three methods evoked in the introduction may lead to the same result
is illustrated by the already noted fact that the non-classical polynomials in [7, equation (4.13)],
related to the Hermite polynomials generated there by ‘quasi-periodicity’ methods, have been
rediscovered in [26], using the ‘modification method’ on the Hermite polynomials (see the
case m = 2 in [26]).

It is worth remarking that no efficient ‘modification’ of a fourth-order Sturm–Liouville
difference (or differential) operator (using for example one of the formulae from section 2.2.2
of the second chapter in [5]) is known in the literature.

Remark next that if the constraint of being polynomials is rejected as well for the
‘transformable’ functions as for the ‘transformed’ ones (retaining only the constraints of
integrability and completeness), the situation becomes much easier. Thus, nowadays, the
method used here is one of the main tools for generating new exactly solvable Hamiltonians
in quantum mechanics (see e.g. [19, 23–25, 30]).

In [29], transformations of orthogonal polynomials were studied whose weights are
obtained by multiplying a rational function by the original ones. Let us note although
the weights 3̃2

γ (x), γ = 1, 2, 3 are obtained by multiplying rational functions by ρ2
γ (x),

γ = 1, 2, 3, respectively, the situation here is generally that the new weights are obtained
from the old ones by multiplying them not by rational functions but by a ratio of products of
Gamma or maybe exponential functions, so the polynomials studied here are not in principle
of the same kind as those from [29]. Another remarkable difference resides in the fact that
the polynomials studied in [29] are ‘ordinary’ orthogonal polynomials satisfying a three-
term recurrence relation and have degrees exactly equal to 0, 1, 2, . . . , while the orthogonal
polynomials studied here do not satisfy the usual three-term recurrence relation and are not of
degrees exactly equal to 0, 1, 2, . . . (see above).

As already noted the polynomials studied here conserve most of the properties of ‘ordinary’
discrete orthogonal polynomials (completeness, orthogonality, difference and recurrence
relations, difference (eigenvalue) equations, duality, . . . ). A global study of orthogonal
polynomials of such a category (other explicit examples are found in [7, 8, 26]) is of a certain
interest.
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Appendix

In this appendix, we give for the concrete cases of γ = 1, 2 and 3 (see tables A.1–A.3
respectively), the transformed interval of orthogonality, the transformed weight function and
the first four transformed polynomials.
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Table A.1. The case γ = 1.

(a, b) (0,+∞)

3̃2
1(x)

3̃2
1(0)4(3 − c)cx

(cx − x − 2)(x + 2)(x + 1)(cx + c − x − 3)

P̄1,0(x) 1

P̄1,1(x) (x + 1)(x + 2)((c − 1)2x − 3c + 3)

P̄1,2(x) (c − 1)(x + 1)(x + 2)((c − 1)2x2 + 3(c − 1)2x − 8c)

P̄1,3(x) (c − 1)((c − 1)3x3 + (7c − 2)(c − 1)2x2 + (c − 1)(12c2 − 19c − 3)x − 30c2)

(x + 1)(x + 2)

Table A.2. The case γ = 2.

(a, b) (0,+∞)

3̃2
2(x) {72cx(((c − 1)(c + 5))2 − (c2 + 10c + 1)(c − 1)2)

(((c − 1)(c − 7))2 − (c2 + 10c + 1)(c − 1)2)3̃2
2(0)}

/{((2x(c − 1)2 − (c − 1)(c + 5))2 − (c2 + 10c + 1)(c − 1)2)
((c − 1)2x2 − (c + 5)(c − 1)x + 6)2(x + 1)(x + 2)
((2x(c − 1)2 + (c − 1)(c − 7))2 − (c2 + 10c + 1)(c − 1)2)}

P̄2,0(x) (c − 1)2x2 − (c + 5)(c − 1)x + 6

P̄2,1(x) (c − 1)((c − 1)2x2 − (c + 7)(c − 1)x + 12)
(x + 1)(x + 2)((2(c − 1)2x − (c + 5)(c − 1))2 − (c2 + 10c + 1)(c − 1)2)

P̄2,2(x) (c − 1)((c − 1)3x3 + (2c − 7)(c − 1)2x2 − (c − 1)(3c2 + 19c − 12)x + 30c)
(x + 1)(x + 2)((2(c − 1)2x − (c + 5)(c − 1))2 − (c2 + 10c + 1)(c − 1)2)

P̄2,3(x) (x + 1)(x + 2)((2(c − 1)2x − (c + 5)(c − 1))2 − (c2 + 10c + 1)(c − 1)2)
(c − 1)((c − 1)4x4 + 6(c − 1)4x3 + (5c2 − 46c + 5)(c − 1)2x2

−12(c2 + 7c + 1)(c − 1)2x + 108c2)

Table A.3. The case γ = 3.

(a, b) (0,+∞)

3̃2
3(x) {2−x32420163̃2

3(0)}
/{(x + 1)(x + 2)(x + 6)((2x + 15)2 − 97)(x2 + 15x + 32)2

(x + 7)((2x + 17)2 − 97)}
P̄3,0(x) x2 + 15x + 32

P̄3,1(x) −(x + 1)(x + 2)((2x + 15)2 − 97)(x + 15)(x + 4)(x + 8)

P̄3,2(x)
1
2 (x + 1)(x + 2)((2x + 15)2 − 97)(x4 + 24x3 + 137x2 − 66x − 1152)

P̄3,3(x) − 1
4 (x + 1)(x + 2)((2x + 15)2 − 97)(x5 + 18x4 − 7x3 − 960x2 − 1740x

+4032)
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